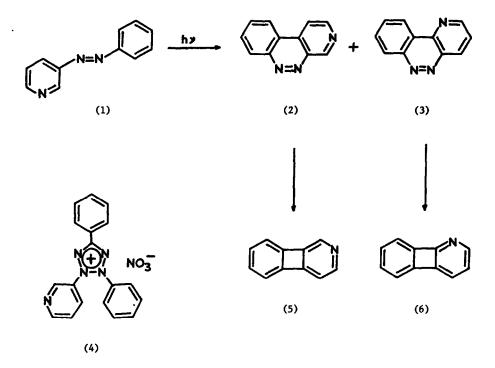
SYNTHESIS OF THE MONOAZABIPHENYLENES

J.W. Barton and R.B. Walker


School of Chemistry, The University, Bristol BS8 1TS, England.

(Received in UK 9 January 1975; accepted for publication 16 January 1975)

Few simple aza-analogues of biphenylene are known. Hünig and Putter¹ obtained a mixture of hexafluoro-2,6- and -2,7-diazabiphenylenes by pyrolysis of the disilver salt of 2,5,6-trifluropyridine-3,4-dicarboxylic acid and an unsubstituted diazabiphenylene has been isolated as a product of dimerisation of 3,4-pyridyne in the gas phase;² this is known to be 2,6-diazabiphenylene as the 2,7-isomer has recently been prepared by thermal extrusion of nitrogen from 2,7,9,10-tetra-azaphenanthrene.³ The latter report prompts us to communicate the results of our work on the synthesis of 1- and 2-azabiphenylene, (5) and (6), the chemistry of which we are currently studying. Previously there have been unsuccessful attempts to prepare monoazabiphenylenes by the reaction of 2,3- and 3,4pyridynes with benzyne in solution,⁴ and by the Lothrop-type cyclisation of 0,0'-dihalogenophenylpyridines.⁵

As an approach to possible triazaphenanthrene precursors of (5) and (6) we investigated the oxidative photocyclisation of the monophenylazopyridines, analogous to the known photocyclisation of certain azobenzenes to benzo [c] cinnoline derivatives.⁶ Irradiation of a 1% solution of 3-phenylazopyridine (1) in concentrated sulphuric acid at 400-450 nm for 72 hr gave, on neutralisation, 2,9,10-triazaphenanthrene (2) (19%), m.p. 213-214°C, together with the 4,9,10-isomer (3) (3%), m.p. 161-163°C. As far as we are aware this is the first example of the photocyclisation of a heterocyclic azocompound,⁷ although recently it has been reported that phenylpyridylazomethines cyclise to diazaphenanthrenes under similar conditions.⁸ These structural assignments, made on the basis of the ¹H N.M.R. spectra of

569

(2) and (3), are consistent with those of the derived thermal extrusion products (5) and (6) <u>vide infra</u>. The minor product (3) is identical with that previously obtained by oxidative photocyclisation and subsequent reductive scission of the tetrazolium salt (4);⁹ reinvestigation of this sequence has confirmed that (3) is the only triazaphenanthrene formed.

Vacuum thermolysis of (2) by slow sublimation through a 1 metre silica tube at 800° C, \sim 0.05 torr gave, after preparative T.L.C. on silica gel in methylene chloride to remove unchanged (2), pale yellow 2-azabiphenylene (5) (58%), m.p. 88.5-89.5°C; M⁴ 153; λ_{max} (EtOH) 241 (log ε 3.73), 248.5 (3.90), 318 (3.22), 331 (3.43) and 345.5 nm (3.49). Similarly, vacuum thermolysis of (3) gave colourless 1-azabiphenylene (6) (34%, m.p. 70-71°C; M⁺ 153; λ_{max}(EtOH) 230 (log ε 4.27), 236 (4.29), 264 (3.84), 344 (3.66) and 358 mm (3.73). Both (5) and (6) exhibit characteristic biphenylene-type U.V. spectra; in their mass spectra the parent ions are the base peaks and prominent peaks at 126 indicate the loss of HCN, although in the case of (6) initial loss of $C_{2}H_{2}$ appears to be the major process. The ¹H N.M.R. spectrum of (5) in deuteriochloroform shows three resonances due to single protons of the pyridine ring at δ 8.16 (broad doublet, H_3), 7.75 (broad singlet, H_1) and 6.60 (doublet of doublets, H_4) with $J_{1,4} = 1.40$ and $J_{3,4} = 4.50$ cps, and a four-proton multiplet at δ 6.84 due to the ABCD system (H_{5-R}) of the benzene ring. The chemical shifts of the protons of the pyridine moiety show close correspondence with those reported for 2,7diazabiphenylene.³ The spectrum of (6) shows a four-proton multiplet at δ 6.87 (H₅₋₈) together with three single-proton doublets of doublets at δ 7.66 (H₂), 6.73 (H₄) and 6.51 (H₃), with $J_{2,3} = 5.9$, $J_{3,4} = 6.9$ and $J_{2,4} = 1.5$ cps respectively. Irradiation of the lowfield signal at δ 7.66 causes collapse of the other two doublets of doublets to simple doublets having the same coupling constant (6.9 cps). For comparison purposes 1,8-diazabiphenylene, m.p. 156.5-158.5⁰C, was prepared (24% yield) by thermolysis of the known 1,5,6,10-tetraazaphenanthrene¹⁰ at 800°C; its ¹H N.M.R. spectrum consists of three doublets of doublets at δ 7.91 (H₂,H₇), 6.99 (H₄,H₅) and 6.68 (H₃,H₆), with J_{2.3} = 5.9, J_{3.4} = 7.0 and J_{2.4} = 1.0 cps respectively.

Experiments are in progress to extend this route to the synthesis of other heterocyclic analogues of biphenylene.

References

- 1. S. Hünig and H. Putter, Angew. Chem. Intern. Edn., 1972, 11, 433.
- 2. J. Kramer and R.S. Berry, J. Amer. Chem. Soc., 1972, 94, 8336.
- 3. J.A.H. MacBride, J.C.S. Chem. Comm., 1974, 359.
- J.W. Barton and A.R. Grinham, unpublished results, c.f.
 G.W.J. Fleet and I. Fleming, J. Chem. Soc. (C), 1969, 1758.
- 5. D.R. Preston, Ph.D. Thesis, University of Bristol, 1960.
- 6. N.C. Jamieson and G.E. Lewis, Austral. J. Chem., 1967, 20, 321, and earlier papers.
- 7. The photoreactions of 2- and 4-phenylazopyridines under these conditions will be described in a forthcoming paper.
- 8. H.H. Perkampus and B. Behjati, J. Heterocyclic Chem., 1974, 11, 511.
- 9. D. Jerchel and H. Fischer, Chem. Ber., 1956, 89, 563.
- 10. A. Etienne and J. Izoret, Fr. Pat. No. 1,369,401; Chem. Abs., 1965, 62, 570g.